If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+48t-30=0
a = -16; b = 48; c = -30;
Δ = b2-4ac
Δ = 482-4·(-16)·(-30)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{6}}{2*-16}=\frac{-48-8\sqrt{6}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{6}}{2*-16}=\frac{-48+8\sqrt{6}}{-32} $
| -39-3k=-3(8k-1) | | 23+a=58 | | (W-2)^2=2w^2+2w-3 | | 3(4p-5)=-29+5p | | 10x=120−5x | | 3x-38=2(7+8x) | | 2x+9=44−3x | | 2.3^x-2=162 | | 15-3x=10-8x | | 2(5c+2)–2c=3(2c+3)+7 | | 8x-8+7x+10+43=180 | | 1,2+0,8∙(5x–3)–(2–x)=0 | | -6(1+7x)=7(1+6x)=-2 | | 4(3b–1)+6=5(2b+4) | | 5x+4(x+3)=120 | | 3x+35=34 | | 2x(x+2)=(x-6)(x+2) | | v^2-v+30=0 | | -.3x^2+.1x=-.06 | | 3=7x-26 | | 10x-18=7x-7 | | x^2+3x-2 | | 1.25x^2-3x+.2=0 | | 5/4x^2-3x+1/5=0 | | 24x-30x-6+12x=81-9x | | 4x+3=10+4x | | -6(d+6)=-10 | | v^2=1/25 | | x*1.5=5 | | 3^-x=81 | | 4(x-2)=5x-3 | | 1/2s=2/5 |